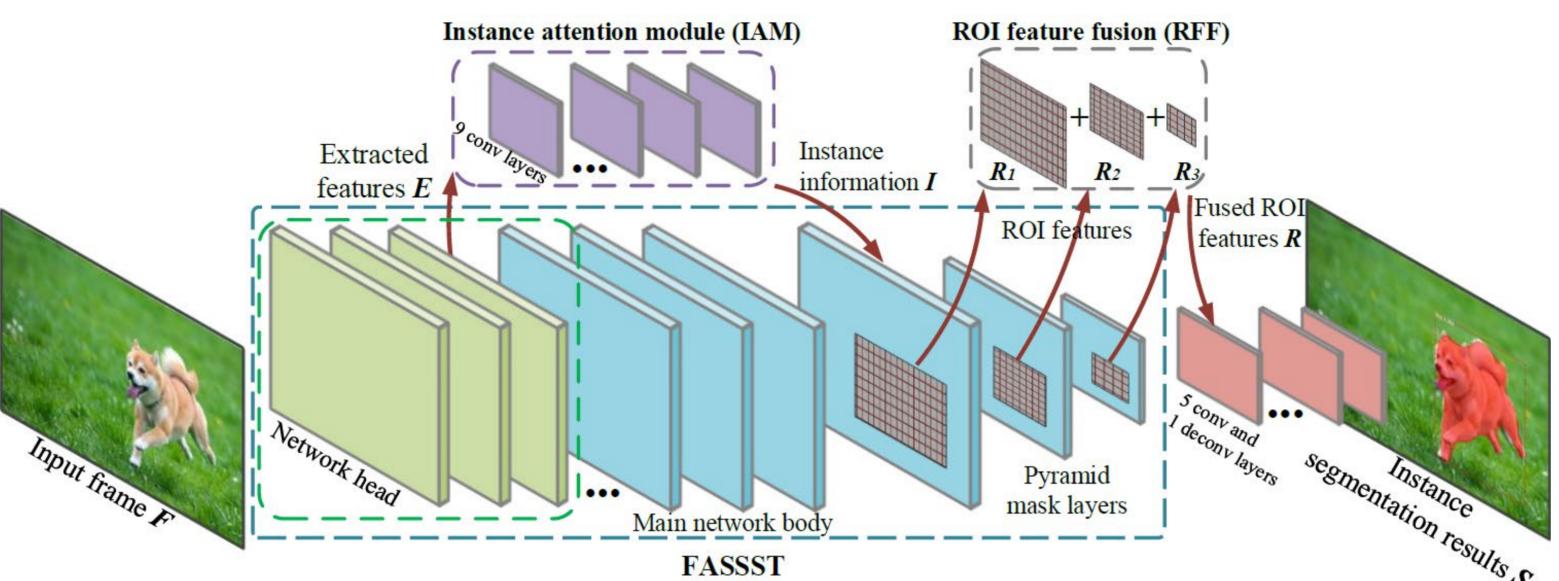

FASSST: Fast Attention Based Single-Stage Segmentation Net for Real-Time Instance Segmentation

Yuan Cheng^{1,2}, Rui Lin², Peining Zhen¹, Tianshu Hou¹, Chiu Wa Ng², Hai-Bao Chen¹, Hao Yu³, Ngai Wong² ¹ Shanghai Jiao Tong University, ² The University of Hong Kong, ³ Southern University of Science and Technology

Acknowledgement: Seed Funding, HKU-TCL Joint Research Centre for Artificial Intelligence, Hong Kong

1. Background



Modern researches on instance segmentation mainly fall into two categories:

- Pixel-wise approaches: learn an affinity relation between image pixels and segment image by segregating pixels of different instances and grouping pixels of the same instance.
- Proposal-based approaches: first propose object candidates by bounding boxes, then select interested ones of them, and perform masking at the end.

2. FASSST

We design FASSST (Fast Attention-based Single-Stage Segmentation NeT) for real-time instance segmentation.

FASSST quickly locates target instances and segments region of interest (ROI) by following steps:

- **Step 1**, the raw feature tensor **E** is generated by the **network head**.
- Step 2, E is parallelly delivered into the main network body and instance attention module (IAM). The IAM regards the instance attention as a single-stage regression problem, which directly learns instance locality information *I* from raw features *E*.
- Step 3, instance locality information I is used to locate ROIs on several = pyramid mask layers and obtain the fused ROI features R by an ROI Main References feature fusion module (RFF).
- **Step 4**, the representation R is fed into the subsequent small-size convolutional layers to get the final instance segmentation results S.

3. Experiments

Visual results on COCO

Accuracy comparison on COCO

Category	Approach	Backbone	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	$\overline{AP_L}$
Pixel-wise	SGN [22]	-	25.0	44.9	25.8	-	-	-
	SSAP [12]	ResNet-101-FPN	29.4	48.1	28.8	-	28.6	-
	FCIS [18]	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
Proposal-based	FCIS+++ [18]	ResNet-101-C5-dilated	33.6	54.5	37.9	-	-	-
	MNC [9]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
	Mask R-CNN [13]	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Single-stage	ExtremeNet [32]	Hourglass-104	18.9	44.5	13.7	10.4	20.4	28.3
	YOLACT [2]	ResNet-101-FPN	31.2	50.6	32.8	12.1	33.3	47.1
	SOLO [28]	ResNet-101-FPN	37.8	59.5	40.4	16.4	40.6	54.2
	SipMask [17]	ResNet-101-FPN	32.8	53.4	34.3	9.3	35.6	54.0
	CenterMask [17]	ResNet-50-FPN	32.9	-	-	12.9	34.7	48.7
	PolarMask [30]	ResNet-101-FPN	30.4	51.9	31.0	13.4	32.4	42.8
Proposed	FASSST	MobileNet-54-V2	34.2	56.4	38.1	14.9	36.7	53.8

He K, et al., "Mask r-cnn", in Proceedings of the IEEE International Conference on Computer Vision. 2017: 2961-2969.

Wang X, et al., "Solo: Segmenting objects by locations", in European Conference on Computer Vision. 2020: 649-665.